Fuel Cell Electric Vehicle (FCEV) for Transport

Fuel Cell Electric Vehicle (FCEV) for transport is an eco-friendly vehicle based on a fuel cell system that generates electricity from hydrogen to power its operation.

FCEV for transport is a zero-emission vehicle that does not emit air pollutants, offering advantages over electric buses with a longer driving range of over 500km and shorter refueling time of less than 20 minutes.

▲ Seoul has introduced eco-friendly hydrogen buses on regular city bus routes

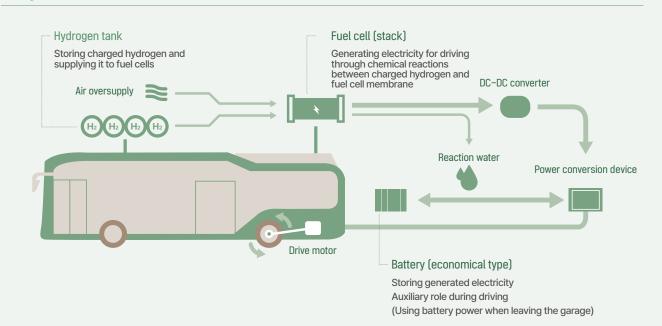
Issues to Tackle

- Carbon emissions from internal combustion engine vehicles are a major cause of global warming.
 - * Compared to passenger cars, internal combustion engine buses emit approximately 30 times more greenhouse gases and 43 times more fine dust annually.

Expected Benefits 🗹

- Converting internal combustion engine buses to hydrogen buses results in the reduction of air pollutants and greenhouse gases
- Operating one FCEV for transport for one year reduces carbon dioxide emissions by 72 tons.
 - * Equivalent to the amount of carbon dioxide absorbed by approximately 2,700 pine trees in one year.

Key Services


- · Refueling with gaseous hydrogen or liquefied hydrogen
- Gaseous hydrogen is cooled to -253°C to create a liquid form for safe mass storage and transportation, purifying intake air and releasing clean air during operation through an equipped hydrogen fuel cell system.
- Providing comfortable rides with approximately 60% less noise and 40% less vibration compared to diesel buses.

្ម៊ែះ Use Cases

- In June 2019, the first hydrogen bus was registered in Changwon City, Gyeongsangnam-do, and by July 2024, 1,000 hydrogen buses were registered in Korea.
- In 2024, Incheon Metropolitan City leads the hydrogen bus transition policy by operating 505 hydrogen buses and 13 hydrogen refueling stations, including liquid hydrogen charging stations.
- \cdot In 2024, Jeju Island is operating 11 green hydrogen buses on two routes and plans to expand the fleet to 300 buses by 2030.

Key Components

Configuration

Technology

1. Hydrogen tank

• Storing compressed hydrogen received from charging stations and transferring it to the power generation unit during operation.

2. Fuel cell

• Generating electricity during the chemical bonding process of hydrogen and oxygen using onboard oxygen/hydrogen supply systems and catalysts such as PEM (Polymer Electrolyte Membrane: using polymer membrane as electrolyte).

3. Drive system

• Distributing electricity generated by the stack and stored in high-voltage batteries to the motor through converters and inverters.

4. Thermal management system

· Optimizing reaction temperature through cooling water lines, pumps, and temperature sensors

	Lov	w-floor (city) bus	High-floor (express) bu
Vehi	cle name	Electricity FCEV	Universe Hydrogen Electric Bu
Fuel	capacity	About 34 kg	About 34 kg
Fuel	capacity Release	About 34 kg 2019~	About 34 kg April 2023
Fuel	Release		
	Release t subsidy	2019~	April 2023

Technology Companies

DOOSAN FUEL CELL www.doosanfuelcell.com HYUNDAI MOTORS www.hyundai.com WOOJIN INDUSTRIAL SYSTEMS www.wjis.co.kr

