Fuel Cell Electric Vehicle (FCEV) for Transport

Fuel Cell Electric Vehicle (FCEV) is an eco-friendly vehicle powered by a fuel cell system that generates electricity from hydrogen.

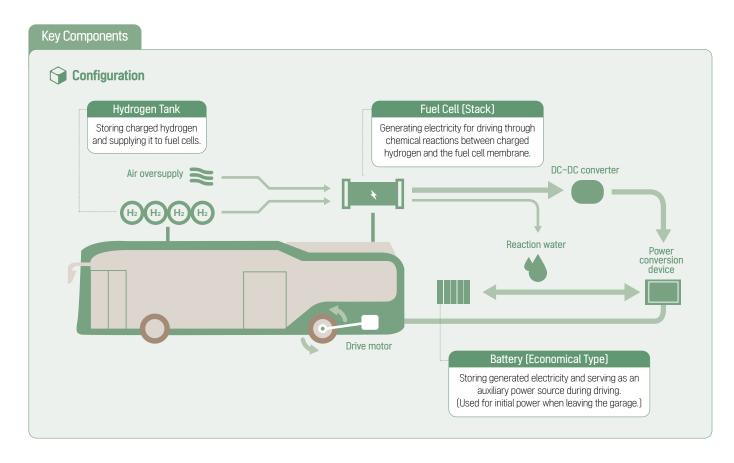
Hydrogen buses emit no air pollutants and have a longer driving range of about 500 km compared to electric buses. Additionally, they have the advantage of a short refueling time of under 20 minutes.

▲ Seoul City has adopted eco-friendly hydrogen buses for regular city bus routes.

Issues to Tackle

- ☑ Internal combustion engine (ICE) buses significantly contribute to carbon emissions, a major factor in global warming.
 - * ICE buses emit 30 times more carbon dioxide and 43 times more fine dust annually per passenger compared to hydrogen buses.
- ☑ Hydrogen buses face adoption barriers such as high initial costs and a lack of charging infrastructure.

Expected Benefits


- Replacing ICE buses with hydrogen buses will reduce air pollution and greenhouse gas emissions.
- ☑ Hydrogen buses are highly efficient for longterm operation on fixed routes, with minimal energy loss and no emissions during refueling.
- A single hydrogen bus reduces approximately 72 tons of carbon emissions annually.
 - * This equates to the absorption capacity of 2,700

Key Services

- · Refueling with compressed or liquid hydrogen as fuel.
- * Liquid hydrogen can be stored and transported safely by cooling it to -253°C to convert it into a liquid state.
- Equipped with a hydrogen fuel cell system to purify intake air and minimize emissions, ensuring clean air during operation.
- Reduces noise by 60% and vibration by 40% compared to diesel buses, offering a quieter and more comfortable ride.

্রেটা Use Cases

- In June 2019, South Gyeongsang Province registered Korea's first hydrogen bus in Changwon City. By July 2024, 1,000 hydrogen buses were registered nationwide.
- · In 2024, Incheon City plans to lead the hydrogen bus adoption policy by operating 505 hydrogen buses with 13 hydrogen refueling stations.
- · In 2024, Jeju Island began operating 11 green hydrogen buses across two routes, with plans to expand to 300 buses by 2030.

Key Technologies

1. Hydrogen tank

· Stores compressed hydrogen supplied at refueling stations and delivers it to the power generation system during operation.

2. Fuel cell

· Utilizes catalysts such as PEM (Polymer Electrolyte Membrane) to generate electricity through chemical reactions between hydrogen and oxygen.

3. Drive system

 Distributes the electricity generated and stored in the highvoltage battery to the inverter and motor.

4. Cooling System

 \cdot Optimizes the system's response by using cooling lines, pumps, and temperature sensors.

Technology Companies

DOOSAN FUEL CELL www.doosanfuelcell.com HYUNDAI MOTORS www.hyundai.com

WOOJIN INDUSTRIAL SYSTEMS www.wjis.co.kr

